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Image Interpolation by Adaptive 2-D Autoregressive
Modeling and Soft-Decision Estimation
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Abstract—The challenge of image interpolation is to preserve
spatial details. We propose a soft-decision interpolation technique
that estimates missing pixels in groups rather than one at a time.
The new technique learns and adapts to varying scene structures
using a 2-D piecewise autoregressive model. The model parame-
ters are estimated in a moving window in the input low-resolution
image. The pixel structure dictated by the learnt model is enforced
by the soft-decision estimation process onto a block of pixels, in-
cluding both observed and estimated. The result is equivalent to
that of a high-order adaptive nonseparable 2-D interpolation filter.
This new image interpolation approach preserves spatial coher-
ence of interpolated images better than the existing methods, and it
produces the best results so far over a wide range of scenes in both
PSNR measure and subjective visual quality. Edges and textures
are well preserved, and common interpolation artifacts (blurring,
ringing, jaggies, zippering, etc.) are greatly reduced.

Index Terms—Autoregressive process, image interpolation,
image modeling, optimization, soft decision estimation.

I. INTRODUCTION

ONE of the most important quality metrics of digital im-
ages is spatial resolution. Despite steady increase of native

sensor resolutions of digital cameras and scanners, new appli-
cations will always emerge that demand even higher spatial res-
olution. Image interpolation is an algorithmic means to increase
the native resolution of an input image. An obvious application
of image interpolation is the reproduction of images captured
by digital cameras for high quality prints in magazines, cata-
logs, wall posters, or even home use. Another important appli-
cation is upconversion of standard-definition video frames for
playback on high-definition television receivers and computer
monitors. Besides consumer electronics, image interpolation is
beneficial and in some cases even necessary in computer vision,
surveillance, medical imaging, remote sensing, and other fields.

Many image interpolation techniques of different tradeoffs
between computational complexity and reproduction quality
were developed. Popular methods, as commonly used in
image/video software and hardware products, are bilinear
interpolation, cubic convolution interpolation [1] and cubic
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spline interpolation [2]. The main advantage of these methods
is their relatively low complexity. Their common drawback
is the inability to adapt to varying pixel structures in a scene,
due to the use of scene-independent interpolators. As a result,
they are all susceptible to defects such as jaggies, blurring, and
ringing.

With ever-increasing computation power in image and video
processing, more sophisticated adaptive image interpolation
methods were proposed in recent years. Many researchers ad-
vocated the approach of edge-guided interpolation. Jensen and
Anastassiou published a scheme that detects edges and fits them
with some templates to improve the visual perception of inter-
polated images [3]. Carrato and Tenze used some predetermined
edge patterns to optimize the parameters in the interpolation
operator [4]. To preserve edge structures in interpolation, Li and
Orchard proposed to estimate the covariance of high-resolution
(HR) image from the covariance of the low-resolution (LR)
image, and then interpolate the missing pixels based on the
estimated covariance [5]. This edge-directed interpolation work
was cast by Muresan and Parks into the framework of adaptive
optimal recovery [6]. Alternatively, Zhang and Wu proposed
to interpolate a missing pixel in multiple directions, and then
fuse the directional interpolation results by minimum mean
square-error estimation [7].

Wavelets were also used in image interpolation. The idea is
to exploit the statistical similarity between different scales of a
wavelet-decomposed image. The interpolation is done by pre-
dicting the HR details from the LR observation [8]–[10]. Wu
and Zhang studied image interpolation in a framework of pat-
tern classification [11]. In [12], Malgouyres and Guichard an-
alyzed some linear and nonlinear image enlargement methods
theoretically and experimentally.

The reproduction quality of any image interpolation algo-
rithm primarily depends on its adaptability to varying pixel
structures across an image. In fact, modeling of nonstationarity
of image signals is a common challenge facing many image
processing tasks, such as compression, restoration, denoising,
and enhancement. We had a measured success in this regard
in a research on predictive lossless image compression [13].
In that work, a natural image is modeled as a piecewise 2-D
autoregressive process. The model parameters are estimated on
the fly for each pixel using sample statistics of a local window,
assuming that the image is piecewise stationary. In this paper,
we extend this approach to image interpolation. An obvious
difference is in that the sample set for parameter estimation has
to be causal to the current pixel for predictive coding, but does
not need to be so for interpolation, which is to the advantage
of the latter task. On the other hand, for image interpolation
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the fit of the model to the true HR image signal is made more
difficult by the fact that only a LR version of the original can
be observed.

All image interpolation methods involve fitting missing pixels
to some sample structure learnt from the LR image. This is best
accomplished by estimating a block of missing pixels in relation
to the nearby known pixels rather than estimating the individual
missing pixels in isolation as done up to now. The main con-
tribution of this paper is a new image interpolation technique,
called soft-decision adaptive interpolation (SAI). The SAI tech-
nique, via a natural integration of piecewise 2-D autoregressive
modeling and block estimation, achieves superior image inter-
polation results to those reported in the literature. It is shown
that the new SAI technique is equivalent to interpolation using
an adaptive nonseparable 2-D filter of high order.

The rest of the paper is structured as follows. Section II de-
fines a 2-D piecewise autoregressive (PAR) image model to fa-
cilitate the subsequent development. Section III presents the
most important result of this paper: a soft-decision estimation
technique for adaptive image interpolation (SAI). Section IV
discusses how to estimate the PAR model parameters in the LR
image. Implementation details of the SAI algorithm are pre-
sented in Section V, where the reader can also gain an insight
into the inner work of the SAI technique. Experimental results
and a comparison study with some existing popular image in-
terpolation techniques are presented in Section VI. Section VII
concludes.

II. PIECEWISE STATIONARY AUTOREGRESSIVE MODEL

For the purpose of adaptive image interpolation, we model
the image as a piecewise autoregressive (PAR) process

(1)

where is a spatial template for the regression operation. The
term is a random perturbation independent of spatial loca-
tion and the image signal, and it accounts for both fractal-
like fine details of image signal and measurement noise. The va-
lidity of the PAR model hinges on a mechanism that adjusts the
model parameters to local pixel structures. The fact that
semantically meaningful image constructs, such as edges and
surface textures, are formed by spatially coherent contiguous
pixels, suggests piecewise statistical stationarity of the image
signal. In other words, in the setting of the PAR model, the pa-
rameters remain constant or near constant in a small
locality, although they may and often do vary significantly in
different segments of a scene. The piecewise stationarity makes
it possible to learn pixel structures such as edges and textures
by fitting samples of a local window to the PAR model.

The validity of the PAR model with locally adaptive param-
eters is corroborated by the success of this modeling technique
in lossless image compression. Among all known lossless image
coding methods, including CALIC [14], TMW [15], and invert-
ible integer wavelets [16], those that employ the PAR model
with adjusted parameters on a pixel-by-pixel basis have deliv-
ered the lowest lossless bit rates [13], [17]. In the principle of
Kolmogorov complexity, the true model of a stochastic process

Fig. 1. Formation of a LR image from a HR image by down-sampling. The
solid dots are the LR image pixels and the circles are the missing HR pixels.
Interpolation is done in two passes. The first pass interpolates the missing
pixels marked by shaded circles, and the second pass interpolates the remaining
missing pixels marked by empty circles.

is the one that yields the minimum description length. Thus, we
have strong empirical evidence to support the appropriateness
and usefulness of the PAR model for natural images.

In Section III, we will integrate the PAR model into a soft-de-
cision estimation framework for the purpose of image interpo-
lation, and develop the SAI algorithm.

III. ADAPTIVE INTERPOLATION WITH SOFT DECISION

First we introduce some notations that are necessary for the
description of the SAI algorithm. Let be the HR image to
be estimated by interpolating the LR image observed. The
LR image is a down sampled version of the HR image
by a factor of two as illustrated by Fig. 1. Let and

be the pixels of images and , respectively. We
write the neighbors of pixel location in the HR image as ,

. Since implies , we also write an
HR pixel as (likewise, as ) when it is in the
LR image, , as well.

The SAI algorithm interpolates the missing pixels in in
two passes in a coarse to fine progression. The work of the two
passes is shown by Fig. 1, in which the solid dots are known
LR pixels, the shaded dots are those missing pixels to be inter-
polated in the first pass, and the empty dots are the remaining
missing pixels to be interpolated in the second pass. The pixels
generated by the first pass and the known LR pixels form a quin-
cunx sublattice of the HR image (the union of solid and shaded
dots). The second pass completes the reconstruction of the HR
image by interpolating the other quincunx sublattice of empty
dots.

Fig. 2(a) illustrates the spatial configuration of known and
missing pixels involved in the first pass. To avoid intricate no-
tations, from now on we use a single position index to denote
a pixel location instead of 2-D coordinates. For a missing pixel

, its four 8-connected neighbors are available LR pixels,
denoted by , and its four 4-connected neighbors are
missing HR pixels, denoted by , 1, 2, 3, 4. Here the
relative subscript is a generic notation to index a 2-D neighbor
with respect to position . Similarly, for a pixel , its
four 8-connected neighbors are missing HR pixels, written as

, and its four 4-connected neighbors are available LR
pixels written as , 1, 3, 4.

To interpolate a missing pixel in the first pass, we
use a PAR model of parameters to char-
acterize the diagonal correlations of the image signal in a local
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Fig. 2. (a) Spatial configuration in the first pass. (b) PAR model parameters��� �
�� � � � � � � � and ��� � �� � � � � � � � in relationship to spatial correlations
of pixels.

window [see Fig. 2(b)]. Using the simplified notations to re-
place , we rewrite (1) as

(2)

With the PAR model, we interpolate missing pixels
in window by a least-squares block

estimation

(3)

The above image interpolation approach has an important
distinction from its predecessors (e.g., [2] and [5]). Existing
image interpolation methods estimate each missing pixel inde-
pendently from others, which we characterize as hard-decision
estimation. In contrast, we adopt a strategy of soft-decision
estimation in resemblance to block decoding of error correction
codes. Rather than estimating one sample at a time in isolation,
the objective function of (3) requires all missing pixels in a local
window to be estimated jointly. Moreover, the soft-decision

estimation approach brings in a new feedback mechanism that
is the second term in (3). This additional term requires the
estimates of the missing HR pixels to fit the known LR
pixels with the very same PAR model that fits
to . Aided by the feedback mechanism that accounts for
mutual influences between the estimates of the missing pixels
in a local window , the SAI algorithm can mitigate errors of
hard-decision estimation by preventing the PAR model, when
applied to estimated HR pixels , from being violated on
neighboring known LR pixels .

To include horizontal and vertical correlations into the SAI al-
gorithm, we introduce four more parameters
whose geometric meanings are shown in Fig. 2(b). These pa-
rameters are used to impose the same directional correlation
between LR pixels and on between HR pixels and

, namely

(4)

The soft-decision estimation technique can incorporate (4) into
(3). However, one should practice caution since the pixels
and in (4) are all unknown. By using a Lagrangian multi-
plier to regulate the contribution of (4), we extend (3) to the
following constrained optimal block estimation problem [see
(5), shown at the bottom of the page]. In minimizing , the

value of is chosen such that

. The SAI algorithm iterates on
until the constraint is satisfactorily met, by decreasing if the
left side of the constraint is less than the right side and vise versa.
This constraint holds if the sample statistics is shift invariant in
the window . We observe that the value of is in the range
of when meeting the constraint. For most natural im-
ages, one can simply choose with no material loss of
performance compared with the iteratively computed .

Compared to existing autoregressive methods that use param-
eters only [5], [7], the SAI algorithm expands the model pa-
rameter space by using two sets of parameters and . The
expanded PAR model has the potential of representing the HR
image more accurately than in [5], [7]. However, to circumvent
the risk of data overfitting, we do not directly use an autoregres-
sive model of order 8, but rather split model parameters and

in two separate terms of the objective function (5). In fact, in
separation from , the parameters can be better estimated than
parameters using samples in the LR image, as we will see in
Section IV.

subject to (5)
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Fig. 3. Spatial configuration in the second pass of interpolation.

With the block-based soft-decision estimation and the in-
creased order in piecewise autoregressive modeling, the new
SAI algorithm achieves unprecedented interpolation accuracy.
More importantly, it performs consistently well over a wide
range of images, and the performance is far less sensitive
to feature scales than existing techniques. We will return to
these points in Section VI when the experimental results are
presented and discussed.

Up to now, we have only described the interpolation process
of the first pass. Once the missing HR pixels in the first pass
are interpolated as described above, half of the HR pixels are
obtained. The remaining half of the missing HR pixels are to
be interpolated in the second pass. The interpolation problem
in the second pass is essentially the same as in the first pass.
The only difference is that the SAI algorithm now interpolates
the missing HR pixels using their four 4-connected
neighbors, which are either known in or estimated in the first
pass. The problem has the same formulation as in (5), if we
simply rotate the spatial configuration of Fig. 2(a) by 45 (see
Fig. 3).

IV. MODEL PARAMETER ESTIMATION

A key to the success of the SAI algorithm is how well the
model parameters and in (5) can be estimated using LR
image samples. Referring to the spatial relation between the
samples in Fig. 4(b), one gets a linear least-square estimator of
the model parameter vector

(6)

where are the four 4-connected neighbors of the location
in as labeled in Fig. 4(b). Note that the estimates of in (6)
are made using the LR pixels that have the same spatial
orientation and the same scale as the way the HR pixels
are related by in (5) [this is also clear in Fig. 2(b)]. Hence, the
resulting estimates are optimal in the least-square sense under
the assumption that the sample covariances do not change in the
local window , which is generally true for natural images.

However, the estimation of the model parameters is more
problematic. One can simply, as proposed by Li and Orchard
[5], compute via the following linear least-square estimation

(7)

Fig. 4. Sample relations in estimating model parameters. (a) Parameter ���,
(b) parameter ���.

Fig. 5. Possible configuration used in the soft-decision interpolation algorithm.

where are the four 8-connected neighbors of the location
in as labeled in Fig. 4(a). The accuracy of (7) relies on a

stronger assumption that the correlation between pixels is un-
changed in different scales. This is because the distance between

and in (7) is twice the distance between and in
(5).

As argued in [5], the above assumption holds if the window
in question has edge(s) of a fixed orientation and of suffi-
ciently large scale. However, experiments show (see results in
Section VI) that previous edge-based interpolation methods
are prone to artifacts on small-scale spatial features of high
curvature, for which the second order statistics may differ from
LR to HR images. In such cases, the soft-decision estimation
strategy of (5) can moderate the effects of estimation errors
of (7), making the proposed SAI approach considerably more
robust.

V. ALGORITHM DETAILS

To perform soft-decision estimation, the SAI algorithm needs
to operate on blocks of pixels. The neighboring blocks should
have some overlaps to prevent possible block visual artifacts.
Many spatial configurations of the overlapped blocks can be
used. To be concrete let us consider a particular configuration
as illustrated in Fig. 5. As shown in the figure, a block of 12 un-
known pixels , arranged in an octagonal window
(bounded by the solid line in Fig. 5), are jointly estimated, con-
strained by the 21 available LR pixels . Solving
the least-squares problem of (5) in the octagonal window will
yield a group of 12 estimated missing pixels. However, the SAI
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Fig. 6. Eight sample images in the test set. (a) Lena. (b) Baboon. (c) Bike. (d) Flower. (e) Parrot. (f) Bush. (g) Leaves. (h) Necklace.

algorithm will only output the interpolated values of the 4 in-
nermost unknown pixels , , , . In other words, the esti-
mation is done in a moving octagonal window with one layer of
perimeter pixels being overlapped with neighboring windows.

The choice of window size and the degree of spatial overlap
are design details related to implementation complexity and
viewer preference on image appearance. Since the algorithm
interpolates one block of missing pixels at a time by solving
(5), the larger the block and the smaller the overlap, the faster
the algorithm runs. However, the large block size may reduce
the adaptability of the PAR model if there are varying features
of small scale in a locality. Although higher degree of spatial
overlap of neighboring windows means less likelihood of block
artifacts, particularly near the boundaries of different features,
it may cause some blurring of sharp edges.

If norm is used, the SAI algorithm involves solving three
least-squares problems, namely the determination of model pa-
rameters , the determination of model parameters , and the
minimization problem of (5). For each block, we can compute

and in the closed form solutions of (6) and (7). Namely

(8)

where the column vector is composed of all LR pixels
inside the block. The th row of matrix consists of the four
4-connected neighbors of , , and

(9)

where the th row of matrix consists of the four 8-connected
neighbors of , 1, 2, 3, 4.

We rewrite (5) in matrix form

(10)

where is the vector of the 12 unknown
pixels in the current octagon window as labeled in Fig. 5,

is the vector of the 21 available LR pixels in-
side and on the boundary of the octagon window in Fig. 5, and

(11)

where is the identity matrix with the subscript being its dimen-
sion, is the zero matrix whose dimension is indicated by the
subscript, is the Lagrangian factor in (5), and

(12)

where if is the neighbor

of otherwise

Therefore, the estimated block of pixels are, as the solution
of (10)

(13)

As can be seen from (13), each missing pixel is estimated
as a linear combination of all the available LR pixels in the
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TABLE I
PSNR (DECIBELS) RESULTS OF THE RECONSTRUCTED HR IMAGES BY DIFFERENT METHODS. NUMBER IN PARENTHESES IS THE RANK OF THE METHOD.

FOR THE SAI ALGORITHM, ITS GAIN IN DECIBELS OVER THE SECOND-BEST METHOD IS ALSO GIVEN

block, where the weights are specified by the th row of the ma-
trix which is constructed by matrices and . Although the
autoregression model parameters and appear to relate to
its immediate 8-connected or 4-connected neighbors only, the
net effect of soft-decision block estimation is to interpolate
using all known pixels in a local window. This is equivalent to
an adaptive nonseparable 2-D interpolation filter whose order is
the same as the block size of soft-decision estimation, which dis-
tinguishes the SAI technique from the existing adaptive image
interpolation methods.

Clearly, the computation bottleneck of the SAI algorithm is in
solving (13). Inverting the 12 12 matrix (13) is expensive. In-
stead, we use the steepest descent method, which ensures global
minimum for the objective function (10) is convex. In partic-
ular, by exploiting the overlaps of moving windows, we can
launch the steepest descent algorithm from a good initial point
to achieve fast convergence. Referring to Fig. 5, we see that
eight of the twelve unknown pixels in the current octagonal
window have at least one estimate obtained when the adjacent
windows to the north, northwest, northeast and west were pro-
cessed. Due to spatial coherence of the HR image, these esti-
mates are statistically good initial values of the corresponding
variables in the objective function. For the other four unknown
pixels which have no estimates yet, we use results of a tradi-
tional interpolation method (e.g., bicubic interpolation) as the
initial estimates. With this initialization the steepest descent al-
gorithm can converge in three iterations on average in our ex-
periments. Also, note matrix is quite sparse with only 49 out
of 252 elements being nonzero. This sparsity of can be ex-
ploited to save computations.

Another way of reducing computation complexity is to per-
form soft-decision estimation only in areas of high activities, be-
cause simple methods, such as bicubic interpolation, suffice to
interpolate smooth 2-D waveforms. We classify the high activity
areas based on the local variances estimated from LR pixels. If
the local variance is above a threshold, the pixel is declared in
the area of high activities. We empirically find that the variance
threshold value of 100 realizes a good tradeoff between com-
plexity and performance. Fortunately, since most natural images
have an exponentially decaying power spectrum, only a small
fraction of pixels (10% to 25% under the above threshold) need
to be interpolated by the soft-decision method to ensure good
visual quality.

Fig. 7. Pixel locations where the SAI algorithm has smaller interpolation
errors than the competing methods (only those of difference 3 or greater
are plotted) on Bike and Lena images. The intensity level represents the
magnitude of reduction in interpolation error by the proposed method from the
competing method. (a) Bicubic. (b) Method [3]. (c) Method [7]. (d) Method
[5]. (e) Bicubic. (f) Method [3]. (g) Method [7]. (h) Method [5].

VI. EXPERIMENTAL RESULTS AND REMARKS

Extensive experiments were conducted to evaluate the pro-
posed new image interpolation technique in comparison with its
predecessors. For thoroughness and fairness of our comparison
study, we selected a large set of test images, including some of
more difficult cases for image interpolation. Fig. 6 lists eight ex-
ample images in our test set, some of which were also used as
test images in previous papers on image interpolation.

The comparison group includes four other image interpola-
tion methods: bicubic interpolation [1], subpixel edge localiza-
tion [3], edge-directed interpolation [5], and fused bidirectional
interpolation [7]. Table I tabulates the PSNR results of the five
different methods when applied to the eight test images of Fig. 6.
On all instances, the proposed SAI algorithm consistently ranks
the first among all methods in terms of PSNR performance. On
images of rich high frequency components, such as Leaves and
Bikes, the SAI algorithm exceeds the PSNR values of the second
best method by 1 dB or more. Since PSNR is an average quality
measure, we plot in Fig. 7 the spatial locations where the SAI al-
gorithm produces significantly smaller interpolation errors than
the competing methods for more localized image quality assess-
ment. The intensity level of the plots represents the magnitude
of reduction in interpolation error by the new method from the
competing method. Fig. 7 clearly demonstrates the advantage
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Fig. 8. Comparison of different methods on Bike image. (a) Original HR image. (b) Bicubic interpolation. (c) Method in [3]. (d) Method in [7]. (e) Method in
[5]. (f) SAI.

Fig. 9. Comparison of different methods on Lena image. (a) Original HR image. (b) Bicubic interpolation. (c) Method in [3]. (d) Method in [7]. (e) Method in
[5]. (f) SAI.
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Fig. 10. Comparison of different methods on Bush image. (a) Original HR image. (b) Bicubic interpolation. (c) Method in [3]. (d) Method in [7]. (e) Method in
[5]. (f) SAI.

Fig. 11. Comparison of different methods on Flower image. (a) Original HR image. (b) Bicubic interpolation. (c) Method in [3]. (d) Method in [7]. (e) Method
in [5]. (f) SAI.

of the SAI algorithm in reproducing the high frequency
image constructs (edges and textures) over the other
methods.

Given the fact that the human visual system is sensitive to
errors near edges which signify object shapes and interobject
relationship, one can expect from the spatial patterns of Fig. 7
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Fig. 12. Reconstructed images enlarged to compare the edge-directed interpolation method and the SAI algorithm. (a) Method in [5]. (b) SAI. (c) Method in [5].
(d) Method in [5]. (e) SAI. (f) SAI.

that the SAI algorithm should achieve superior visual quality.
Figs. 8–11 compare the results of the five different image inter-
polation methods on test images Bike, Lena, Bush, and Flower,
respectively. Different visual characteristics of the evaluated
methods are exhibited near edges and fine textures in the test
images.

The bicubic interpolation method tends to blur the image
details more than other methods, and it also generates promi-
nent jaggies along sharp edges. This method is in general infe-
rior to the others in visual quality despite its PSNR measure is
the second highest on average, next only to the proposed new
method.

The method of subpixel edge localization [3] reproduces
sharp edges, but the reconstructed edges are somewhat con-
trived and at times unnatural. This problem is exemplified by
the reconstructed flower petals in Fig. 11(c), and by the rim of
hat in test image Lena Fig. 9(c). This method consistently ranks
lower than others in terms of PSNR.

The edge-directed interpolation method [5] is very competi-
tive in terms of visual quality. This is primarily because it pre-
serves long edges well. However, in high activity areas where
features have small curvatures or multiple edges intersect, this
method sometimes generates speckle interpolation noises and
ringing artifacts, as shown in Figs. 8(e) and 11(e), and more
clearly in close-up parts of the reconstructed images in Fig. 12.
Such flaws are the reason that this method only ranks the forth
in PSNR in the comparison group of five methods, although it
achieves pleasant visual effects on large edge structures.

The fused bidirectional interpolation method [7] takes a
middle ground between the direction-less bicubic interpolation
and edge-directed interpolation. It reproduces sharper large
scale edges than the bicubic method, but the reconstruction is

not as good as the method of [5] when the LR image contains
enough information to correctly learn the edge direction. How-
ever, on small–scale features where the edge direction learnt
from the LR image is not reliable, this method can reduce
speckle interpolation noises via the MMSE fusion process. It is
interesting to note that the fusion method ranks in between the
bicubic method and the method of [5] in PSNR.

As is evident in Figs. 8–11, the SAI algorithm eliminates
most of the visual defects associated with the other methods. It
reproduces visually more pleasant HR images than the edge-di-
rected interpolation method [5] that is considered as one of the
best so far. Please refer to Fig. 12 for a side-by-side comparison
between the two methods. Of particular significance is the fact
that the SAI algorithm obtains superior visual quality on image
features of large and small scales alike. This robustness is at-
tributed to the soft-decision estimation technique that enforces
the spatial coherence of estimated pixels according to the PAR
model.

Although the proposed SAI algorithm is presented to double
the horizontal and vertical resolutions, it can be readily general-
ized to scaling factor with being a positive integer. One
can simply apply the proposed SAI algorithm times to scale
the input image by times. For an arbitrary scaling factor (not
an integer power of two), the interpolation can be done by first
using the SAI algorithm to expand the input image by times
such that , and then applying a conventional
image interpolation algorithm, such as bicubic or bilinear inter-
polation, to scale up the output image of the new method by
times such that . Fig. 13 is an example for scaling factor
of 3, and it shows that the image interpolated by the SAI algo-
rithm followed by bicubic interpolation has better visual quality
than the image by bicubic interpolation only.
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Fig. 13. Images scaled up three times using different methods: (a) the bicubic
method; (b) the SAI algorithm followed by the bicubic interpolation (i.e., first
scaling by a factor of 2 and then by a factor of 1.5).

Fig. 14. Visual effects of over-fitting of LR data. (a) Original image. (b) Output
image of the SAI algorithm without safe guard against over-fitting.

As described in Section IV, the estimation of model pa-
rameters assumes that the spatial correlation between the HR
pixels is approximately the same as between LR pixels. When
this assumption is violated, the SAI algorithm may introduce
some false edges or textures due to over-fitting of LR data. This
over-fitting problem can be seen in Fig. 14. For this particular
test image, the spatial correlation changes after down sampling,
which causes the SAI algorithm to produce erroneous textures.
There is a way to detect where the over-fitting problem will
likely occur. If the value of the cost function (5) at the conver-
gence of the SAI algorithm is above a threshold, then chances
are that the PAR model is not valid in the locality. As a recourse,
one can switch to a more conservative method such as bicubic
interpolation to prevent the generation of false pixel structures.
However, this also tends to blur some sharp edges. Further
research is needed to find a better solution to the problem.

VII. CONCLUSION

A novel soft-decision approach is proposed for adaptive
image interpolation. When coupled with a piecewise autore-
gressive image model, the soft-decision approach estimates
a block of missing pixels jointly by imposing an adaptively
learnt spatial sample relation not only between known pixels
and missing pixels but also between missing pixels themselves.
This new image interpolation technique outperforms the ex-
isting methods in both PSNR measure and subjective visual
quality over a wide range of scenes, by preserving the spacial
coherence of the reconstructed HR image on features of large
and small scales alike.
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